Introduction to Parallel Programming Models

Tim Foley

Stanford University
Overview

- Introduce three kinds of parallelism
 - Used in visual computing
 - Targeting throughput architectures

- Goals
 - Establish basic terminology for the course
 - Recognize idioms in your workloads
 - Evaluate and select tools
Scope

- Games as representative application
 - Demand high performance, visual quality
 - Already using MC, throughput and heterogeneous HW
 - Visibility, illumination, physics, simulation

- Not covering every possible approach
 - Explicit threads, locks
 - Message-passing/actors/CSP
 - Transactions/REST
What goes into a game frame?
Beyond Programmable Shading

This.

Computation graph for *Battlefield: Bad Company* provided by DICE
A modern game is a mix of...

Data-parallel algorithms
A modern game is a mix of...

Task-parallel algorithms and coordination
A modern game is a mix of...

Standard and extended graphics pipelines

- Input Assembly
- Vertex Shading
- Primitive Setup
- Geometry Shading
- Rasterization
- Pixel Shading
- Output Merging

Pipeline Flow
Beyond Programmable Shading
Structure of this talk

- For each of these approaches
 - Key idea
 - Mental model
 - Applicability

- Composition
 - How these models combine in the real world
Caveats

- **Turing Tar Pit**
 - Just being able to express it doesn’t make it fast!

- **Most general model is not always best**
 - Constraints are what enable optimizations

- **Not every model requires dedicated tools**
 - These patterns can be expressed in many languages
Data parallelism
Key Idea

- Run a single kernel over many elements
- Per-element computations are independent

- Can exploit throughput architecture well
 - Amortize per-element cost with SIMD/SIMT
 - Hide memory latency with lightweight threads
Mental Model

- Execute N independent work items
 - aka “elements”, “fragments”, “strands”, “threads”

- All work items run the same program: *kernel*

- Work item uses data determined by $0 \leq i < N$
 - $[0, N)$ is the domain of computation
Domain of computation

- Determines number and "shape" of work items

- Often based on input/output data structure
 - Not required – domain and data may be decoupled

- Many domain "shapes" possible
 - Regular
 - Nested
 - Irregular
Simple Data-Parallelism

- **Data structure**
 - Regular array

- **Kernel**

- **Domain of computation**
 - 1D interval

```c
void k(int i) {
  B[i] += A[i];
}
```

Data:

```
A: [ ] [ ] [ ] [ ] [ ] [ ]
B: [ ] [ ] [ ] [ ] [ ] [ ]
```

Program:

```
void k(int i) {
  B[i] += A[i];
}
```

Computation:

```
k(0)  K(1)  K(2)  K(3)  K(4)  K(5)
```
Simple Data-Parallelism

- Data structure
 - N-D array

- Kernel

- Domain of computation
 - N-D interval

```c
void k(int i, int j) {
    B[i][j] += A[i][j];
}
```
Shapes need not match

- Data structure
 - N-D array
 - 1D array

- Kernel

- Domain of computation
 - N-D interval

```c
void k(int i) {
    for(int j = 0; j < M; j++)
        B[i] += A[i][j];
}
```
Advanced data-parallelism

- Hierarchical domains
 - Allow work items to communicate
 - Useful for sums, scans, sorts

- Irregular domains
 - Nested or “ragged” data structures
"Flat" domains

- Kernel temporaries / scratch data are
 - Private: inaccessible to other work items
 - Transient: inaccessible after work item completes

- Flat domain exposes work-item locality

- Optimization: put scratch in register file or caches
Communication

- Need to communicate intermediate results
 - Each work item computed value, now want sum

- Write to main memory, launch a new kernel?
 - Don’t exploit locality, rest of memory hierarchy

- Employ a hierarchy of domains
Hierarchical domains

- A domain composed of smaller domains
 - Each level has its own scratch memory
 - Often tied to memory hierarchy
 - ex. Registers, L1$, L2$, DRAM

- Work item can access
 - Kernel parameters
 - Own scratch memory
 - Scratch memory of ancestors in hierarchy
Hierarchical domains

- Communicate through parent item scratch
 - ex. Each element computes value “a”
 - Add local value into shared “sum”

- Data races are now possible
 - Atomic operations
 - Synchronization barriers

- Also possible for global memory...
Irregular Domains

- "Ragged array" data structure
 - N-D array- / grid-of-lists

- Used for
 - Bucketing: particles in a cell
 - Collision: potential collidees
 - ...

\[
\{\{A0,A1\}, \{B0,B1,B2\}, \{\}, \{D0,D1\}, \{E0\}, \{F0\}\}
\]
Irregular Domains

- Must choose in-memory representation
 - Pointer per bucket?

- Performance

- Required operations
 - Apply kernel to each bucket?
 - Apply kernel to each element?

\[\{{A_0,A_1}, \{B_0,B_1,B_2\}, \emptyset, \{D_0,D_1\}, \{E_0\}, \{F_0\}\}\]
A simple representation

Logical

<table>
<thead>
<tr>
<th>A0</th>
<th>B0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
<td></td>
</tr>
</tbody>
</table>

Physical

Count:

| 2 | 3 | 0 | 2 | 1 | 1 |

Offset:

| 0 | 2 | 5 | 5 | 7 | 8 |

Storage:

A0 A1 B0 B1 B2 D0 D1 E0 F0
Apply to each element

Count:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Offset:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Storage:

A0 A1 B0 B1 B2 D0 D1 E0 F0
Apply to each bin

Count:

Offset:

Storage:

A0 A1 B0 B1 B2 D0 D1 E0 F0

2 3 0 2 1 1

0 2 5 5 7 8
Irregular data parallelism

- Key insight: represent irregular structure as flat index and storage arrays
 - Many other representations possible

- Allows efficient data-parallel implementation of some irregular algorithms
 - Many examples in the literature
Pipeline parallelism
Key Idea

- Algorithm is an ordered sequence of stages
 - Each stage emits zero or more items

- Increase throughput by running stages in parallel

- Exploit producer-consumer locality
 - On-chip FIFOs
 - Efficient bus between cores
GPU Pipeline (DX10)

- Pipeline of
 - Fixed-function stages
 - Programmable stages
 - Data-parallel kernels

- Stages run in parallel
 - Even for unified cores

- Queues between stages
 - Often in HW
Why pipelines?

- Variable rate amplification
 - Rasterizer: 1 tri in, 0-N fragments out
 - Ray tracer: 1 hit in, 0-N secondary/shadow rays out
 - Load imbalance
Pipelines can cope with imbalance

- Re-balance load between stages
 - Buffer up results for next stage

- Optimize for locality
 - Specialized inter-stage FIFOs
 - On-chip caches, busses or scratchpads
User-defined pipelines

- Standard practice for console developers
 - Custom Cell/RSX graphics pipelines on PS3

- Pipeline-definition tools still research area
 - GRAMPS [Sugerman et al. 2009]

- Challenges
 - Bounding intermediate storage
 - Scheduling algorithms
Task parallelism
Key Idea

- Achieve scalability for heterogeneous and irregular work by expressing dependencies directly

- Lightweight cooperative scheduling
What is a Task?

- Think of it as an asynchronous function call
 - “Do X at some point in the future”
 - Optionally “… after Y is done”

- Might be implemented in HW or SW

- Almost always cooperative, not preemptive
Why tasks?

- Start with sequential workload
Why tasks?

- Identify data- and pipeline-parallel steps
Why tasks?

- Identify data- and pipeline-parallel steps
- Assume perfect scaling
Why tasks?

- Cost now dominated by sequential part
 - The part not suited to data- or pipeline-parallelism

- Oh yeah... that’s just Amdahl’s Law
Using tasks

- If we know dependencies between the steps
Using tasks

- If we know dependencies between the steps
- We can distribute the work across cores
 - Respecting the dependencies
Finite # of cores

- It looks more like this
 - Multiple kinds of work fill in the “cracks”
Task/job systems

- Standard practice for PS3 games
 - Gaining currency on other consoles, desktop

- One worker thread per HW context
 - Cooperative scheduling
 - Pull tasks from an incoming queue
 - Load balance using “work stealing” [Cilk]
Task granularity

- Coarse-grained tasks easy to identify
- Can schedule poorly
 - Coarse-grained dependencies
 - “Bubble” waiting for predecessor to clear
Task granularity

- Fine-grained tasks pack well
- More scheduling overhead
 - Tune task size to strike a balance
Tasks take-away

- Can’t write sequential app with parallel pieces
 - Amdahl’s Law will bite you every time

- Must involve parallelism from the top down

- Task systems
 - Handle the code that won’t fit other models
 - Heterogeneous, irregular
 - Dynamically generated work, dependencies
 - Provide scalability and load balancing
Composition
Picking the right tools

- No one model is best for all apps
 - Or even all parts of one app

- Real-world parallel apps use combinations
 - Case in point: the graphics “pipeline”
 - Pipeline-parallel buffering between stages
 - Programmable stages run data-parallel
 - Task-parallel sharing of unified shader cores
Data Parallelism

- **Strengths**
 - Easy to get high utilization of throughput architecture
 - Implicit use of SIMD/SIMT
 - Implicit memory latency hiding

- **Weaknesses**
 - Works best for large, homogeneous problems
 - Work efficiency drops with irregularity
 - Core resources divided amongst all elements
Pipeline Parallelism

- **Strengths**
 - Copes with variable data amplification
 - Can exploit producer-consumer locality

- **Weaknesses**
 - Best scheduling strategy workload-dependent
 - No general-purpose tools for current HW
Task Parallelism

- **Strengths**
 - Scales even with irregular/dynamic problems
 - Viable parallelism approach for global app structure

- **Weaknesses**
 - No automatic support for latency-hiding
 - Need to explicitly target SIMD width
Summary

- Data-, pipeline- and task-parallelism
 - Three proven approaches to scalability
 - Applicable to many problems in visual computing

- Look for these to surface as we discuss
 - Architectures
 - Tools
 - Algorithms
Questions?
Backup
Many possible syntaxes

<table>
<thead>
<tr>
<th>Kernel Language</th>
<th>Parallel "Loop"</th>
</tr>
</thead>
</table>
| ```c
kernel void k(
 float* A, float* B,
 float* C)
{
 C[id] = A[id] + B[id];
}
...` `k<N>(A, B, C);` | ```c
par_for(int i = 0; i < N; i++)
 C[i] = A[i] + B[i];
...` |

<table>
<thead>
<tr>
<th>Array Operations</th>
<th>Parallel Functional Map</th>
</tr>
</thead>
</table>
| ```c
Stream<float> A, B, C;
...
C = A + B;` | ```c
fun k(a, b) = a + b
...
C = par_map(k, A, B)` |

Beyond Programmable Shading
Example syntax

Kernel Language

```c
kernel void k(...) {
  level_2 float sum = 0;
  level_1 float a;

  a = ...
  atomic_add(&sum, a);
}
...

k<N, M>(A, B, C);
```

Parallel “Loop”

```c
par_for(int i=0; i < N; i++) {
  float sum = 0;

  par_for(int j=0; j < M; j++)
  {
    float a;
    a = ...
    atomic_add(&sum, a);
  }
}
```
Host/GPU pipeline

- Graphics command stream
 - Host packs, GPU consumes in parallel

- Distribute pack work across N host cores
 - Common technique in console graphics
 - Will eventually translate to desktop

Host: ... Prepare Frame N Prepare Frame N+1 Prepare Frame N+2 ...

GPU: ... Render Frame N-1 Render Frame N Render Frame N+1 ...
Tasks and threads

- Task looks a lot like an OS thread
 - Created with function to execute
 - Waits on a queue to be scheduled to a core
 - May trigger event on completion

- Differences
 - Cooperative, not preemptive scheduling
 - Lightweight create/destroy
 - “Join” often restricted and lightweight